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Abstract
Guild is the most important long-term virtual community
and emotional bond in massively multiplayer online role-
playing games (MMORPGs). It matters a lot to the player
retention and game ecology how the guilds are going, e.g.,
healthy or not. The main challenge now is to character-
ize and predict the guild health in a quantitative, dynamic,
and multi-dimensional manner based on complicated multi-
media data streams. To this end, we propose a novel frame-
work, namely Stability-Aware Multi-task Learning Approach
(SAMLA) to address these challenges. Specifically, different
media-specific modules are designed to extract information
from multiple media types of tabular data, time series charac-
teristics, and heterogeneous graphs. To capture the dynamics
of guild health, we introduce a representation encoder to pro-
vide a time-series view of multi-media data that is used for
task prediction. Inspired by well-received theories on orga-
nization management, we delicately define five specific and
quantitative dimensions of guild health and make parallel pre-
dictions based on a multi-task approach. Besides, we devise a
novel auxiliary task, i.e., the guild stability, to boost the per-
formance of the guild health prediction task. Extensive ex-
periments on a real-world large-scale MMORPG dataset ver-
ify that our proposed method outperforms the state-of-the-art
methods in the task of organizational health characterization
and prediction. Moreover, our work has been practically de-
ployed in online MMORPG, and case studies clearly illustrate
the significant value.

Introduction
Massively multiplayer online role-playing games
(MMORPGs) have become a phenomenon of growing
cultural, social, and economic importance, routinely at-
tracting millions of players (Liao et al. 2020). Guild, often
called tribe or clan in MMORPGs, is a smaller piece of
the community made up of users with shared goals (Pisan
2007). It allows players to interact more intimately with the
guild’s members, which is of great significance to character
leveling, player retention, game activity, etc (Poor 2015).
However, the guild health will deteriorate due to various
reasons, gradually becoming inactive or disbanding directly,
which harms both the player and the platform.
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Figure 1: Guild health. Guild health can be measured from
multiple dimensions.

Considering the guild is a specific organization in
MMORPGs, we refer to the existing literature on orga-
nization and its health. Traditional research on organiza-
tions in the field of management mostly relies on survey
interviews and classical statistical models (Meggetto et al.
2020). The interpretability and low-cost characteristics of
these methods make them popular with many researchers
and have achieved rich academic results. However, these re-
search methods are mainly based on simple static research
scenarios, which are inconsistent with the complicated real-
time game scenarios we are discussing. Another research
paradigm is to characterize the activities and cohesion of the
organization from the perspective of social network analy-
sis, and to explore the different network structure attributes
of the organization in different life cycle stages (Lee et al.
2013). Note that this method can effectively use the organi-
zational structure information and perform large-scale cal-
culations (Wu and Pan 2018). However, due to the difficulty
of obtaining member portraits and the ambiguity of relation-
ship types in traditional company research, most of these
methods do not consider node-level attributes and treat the
connections between members as homogeneous.

In general, the previous researches mainly suffer from
three challenges. Firstly, the organizational structure of
guilds is complicated, coupling as well as heteroge-
neous (Rodrı́guez et al. 2019). Enriched with different el-
ements for building a virtual world, MMORPGs can track
a variety of data of a guild, including the static character-
istics of guilds, the portraits of guild members, the hetero-



geneous relationships among guild members (e.g., teaming,
trading, chatting, etc.) and complicated interactions among
them. Secondly, the dynamic nature of the guild health has
not been well explored. On the one hand, the guild is not
a static organization, and the instability of its members will
have a great impact on the guild health. On the other hand,
the guild health will continue to change over time, and how
to characterize and predict the guild health based on the
historical health status is an urgent problem to be solved.
Thirdly, it is not easy to directly quantify guild health, ac-
tually a multi-dimensional measure. Obviously, as shown
in Figure 1, guild health usually consists of factors such as
wealth, combat power, and communication. It is not advis-
able to judge the totally guild healthy based on the value of
any one dimension. For example, we cannot say that a highly
chatty organization is healthier than a militant organization,
especially in the game scene.

To address these challenges, this paper proposes a new
data-driven end-to-end neural network framework, namely
Stability-Aware Multi-task Learning Approach (SAMLA),
to solve the problem of calculating the guild health. Firstly,
for characterizing the multiple heterogeneous complicated
coupling relationship structures, we integrate all the media
data related to the guild, which can be divided into three
entities: guild portrait, player portrait and heterogeneous
relationship among players. In addition to using Wide and
Deep (Cheng et al. 2016) and GCN (Gao, Wang, and Ji
2018) to extract different aspects of guild representation, we
also design an attention mechanism to capture the mutual
influence between guild portraits and guild members. Sec-
ondly, since the guild health is dynamic and changeable, the
long-term and short-term health of the guild will have a cer-
tain impact on future health. We input the guild representa-
tion of a period into the Transformer Encoder (Vaswani et al.
2017) to capture the timing information of the guild. Thirdly,
for measuring the guild health from multiple dimensions,
inspired by the research of management organization (Ly-
den and Klingele 2000; Zhao et al. 2021), we innovatively
divide the guild health into five dimensions, namely Com-
munication, Ability, Resource, Activity and Leadership. The
corresponding specific indicators are illustrated in Appendix
Table 1. Multi-task learning method is designed to estimate
the sub-goals in parallel (Cao et al. 2020; Zhao et al. 2019).
As mentioned in (Poor 2015), the movement of guild mem-
bers is closely related to the prosperity and decline of the
guild. For this reason, we take the perception of guild sta-
bility as an auxiliary task to supplement the prediction of
guild health. Besides, since the importance of different di-
mensions of guild health has not been mentioned in the lit-
erature, we design an adaptive weight learner for joint opti-
mization. This approach will automatically generate weights
for different tasks from the data and train them together with
the model as parameters.

The main contributions of this paper are as follows:

• To our knowledge, this paper represents the first effort
to model the health of the guild by integrating multi-
ple heterogeneous complicated coupling media data. A
new deep neural network, namely SAMLA, is proposed,

which can quantitatively and dynamically characterize
and predict the guild health.

• Our method can simultaneously perceive guild stability
and predict guild health in a multi-dimensional manner
under the framework of multi-task learning. The balance
of main and auxiliary tasks is automatically achieved us-
ing an adaptive weight learner during joint optimization.

• Intensive experiments have shown that our model per-
forms better than the current state-of-the-art methods for
measuring the health of guilds, and can be easily ex-
tended to online community research. We also deploy
it in several large MMORPG games, which confirms its
value in industrial applications.

Related Work
Our proposed method solves the problem of guild health
characterization and prediction by constructing a new multi-
media neural network framework. Therefore, we briefly re-
turn to the most relevant work from two aspects: 1) guild
analysis and 2) graph convolutional networks.
Guild Analysis: Guild analysis is a key component of many
game researches, such as classification of guild types, explo-
ration of the relationship between guilds and players, and
guild life cycle prediction (Liao et al. 2020). Traditional
guild analysis is mostly based on simple scale analysis or so-
cial network analysis methods. Specifically, Chen, Sun, and
Hsieh (2008) divide the guild into five types according to
its stability. Pisan (2007) design a scale from the perspec-
tive of social identity theory and find that guild identity has
a significant impact on player retention. Kang et al. (2015)
conduct exploratory factor analysis to analyze the reasons
why players join the guild. The result shows that communi-
cation and community status play an important role in the
guild life cycle. Chung et al. (2014) further define concepts
such as group cohesion and group diversity based on social
network analysis indicators, and use decision tree methods
to obtain the reasons for player churn.

Different from the above studies, we focus on a new re-
search topic, i.e., guild health characterization and predic-
tion, by adopting a new multi-media data-driven neural net-
work approach.
Graph Convolutional Networks: Recently, Graph Convo-
lutional Networks (GCNs) have shown huge success for
graph representation learning and related applications (Wu
et al. 2020b). Specifically, Sun et al. (2019) improve GCN
in their framework to capture the compatibility characteris-
tics perceived by the organization to solve the P-O fit prob-
lem. On the identification of high-potential talents in orga-
nizations, Ye et al. (2019) combine GCN and social net-
work analysis indicators to construct employee portraits, and
achieve good performance on this task. Wu et al. (2020a) de-
sign an adaptive GCN framework for both score prediction
and user missing attribute inference, and finally achieve bet-
ter results than a single task.

In this paper, we take advantage of GCN to capture mul-
tiple complicated heterogeneous relationships in guilds. To
enhance the completeness and accuracy of the guild health



characterization and prediction, we also employ a multi-
tasking modeling approach, inspired by management work.

Proposed Method
In this section, we first introduce the overall architecture of
the proposed model SAMLA and then describe the model
optimization process.

Problem Definition
Our multi-media data stream consists of three entities:
player portraits, guild portraits, and heterogeneous relation-
ships among players. V = {v1, ..., vm} is a set of play-
ers, where m is the number of players. The player por-
trait of vi is denoted as ui, which is a fixed-length vector.
P = {p1, ..., pn} is a set of guilds, where n is the number
of guilds. pi is made up of {v1, v2, ..., vl}, where l is the
number of players of the guild. The guild portraits of pi is
denoted as xi, which is a fixed-length vector. Meanwhile,
we use G = (V,E,U) as relation graph, where V is the set
of players and U = {u1, ..., um} denotes the portraits of all
players, . In G, E represent all directed edges (ws, vi, vj),
where ws is the weight of the edge and vi is the player. The
weight of the edge is defined as the frequency of the occur-
rence of the edge within the relation. r is the relationship
type, in this paper, r ∈ {trade, friend, team, chat}. Ni is
player vi’s neighbors. ev and ep represent player and guild
embedding respectively.

Overview of SAMLA Framework
Figure 2 illustrates the overall architecture of our pro-
posed SAMLA. Specifically, SAMLA includes three main
modules: 1) Unified Representation Extraction Module
(UREM), 2) Historical State Extraction Module (HSEM),
and 3) Guild Health Prediction Module Based on Stability
Perception(SHPM). Firstly, media-specific network struc-
tures are designed based on multi-media types to embed
guild characteristics, player characteristics and diverse rela-
tionships among players into a unified representation vector.
Multiple representation vectors over a continuous period are
then fed into the HSEM to capture the dynamics of the guild
health. Finally, inspired by organizational research in man-
agement, SHPM innovatively divides organizational health
into five specific dimensions while perceiving the stability
of guilds, and uses multi-task learning methods to estimate
each sub-goal in parallel.

Unified Representation Extraction Module
The media-specific feature extraction module at every mo-
ment is mainly composed of three parts, the guild portrait
embedding layer, the relationship embedding layer, and the
use of attention mechanism to capture the interaction be-
tween the guild and the player. To ensure the memorization
and generalization of the model, we first use Wide and Deep
to encode the original features of the guild pi at time t. The
features of the guild xi,t at t are numerical or categorical.

eWpi,t
= WD(xi,t), (1)

where WD(.) are Wide and Deep module.

Then use GCN as the main building block to integrate
the complicated heterogeneous relationships in the guild
structure, and naturally obtain the topological neighborhood
structure and edge information of each node. For each player
i on each relationship graph r, its representation hl+1

i,t on the
l + 1th GCN layer is:

hr,l+1
i,t = σ(

∑
j

1

cri,j
hr,l
j,tW

l||hr,l
i,t), (2)

where σ is activation function and W l is a transformation
matrix in the lt,h layer. cri,j,t =

√
dri,td

r
j,t, where j ∈ Ni,t,

dri,t, d
r
j,t is the degree of node i, j at time t. || is the concate-

nation operation. Each player’s portrait ui,t is taken as the
initial embedding hr,0

i,t . The final aggregated node represen-
tation actually contains information of itself and neighboring
nodes, as well as structural features such as edge weight.

Then for each relation graph r, We aggregate players with
the same guild ID to obtain guild-level relation representa-
tion erpi,t

erpi,t
= Agg(hr,l+1

i,t ,∀i ∈ Npi,t
), (3)

where Agg is an aggregate function, here is average pooling.
Npi,t

are all members of guild pi at time t and hr,l+1
i,t is

embedding of the player i in the l + 1 layer of GCN.
To further capture the mutual influence between the guild

portrait and the guild members, we incorporate eWpi,t
and

erpi,t
into the attention mechanism for updating, as shown in

Figure 3. Specificaly, we first process eWpi,t
through the ma-

trix W into the same embedding size as erpi,t
. Then use the

self-attention mechanism between the guild portrait and the
guild relationship to update the relationship representation.

eWpi,t
= W (eWpi,t

), (4)

er
′

pi,t
= Concat(MultiHeadAttn(erpi,t

, eWpi,t
)), (5)

where MultiHeadAttn is multi head attention and er
′

pi,t
is

a concatenation of all updated relations’ embeddings. Then
we concat all the relations’ embeddings and graph portraits
embedding to obtain the unified representation of guild pi at
time t, i.e., epi,t

.

epi,t
= er

′

pi,t
||eWpi,t

, (6)

Historical State Extraction Module
Due to the excellent performance of Transformer in time se-
ries modeling, we use Transformer Encoder to capture the
dynamics of the guild health in this section. We first replace
the sequence position i with a timestamp t, and then add it
to epi,t

to maintain the time order.

TE(t,2i) = sin(t/100002i/d), (7)

TE(t,2i+1) = cos(t/100002i/d), (8)

ePpi,t
= epi,t

+ TE(t), (9)
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Figure 2: The overall framework of SAMLA.
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Figure 3: Heterogeneous graph representation extraction. (a)
Update node embedding with GCN, and aggregate nodes in
pi with pooling. (b) Attention mechanism, which is used to
capture the interaction between the guild and the player.

where i is the dimension and d is the embedding size. Next,
we use the multi-head attention mechanism to capture the
long and short-term historical health of the guild.

eMpi,t
= MultiHeadAttn(ePpi,1

, ..., ePpi,k
), (10)

where k is the length of the history window used for training.
Then, we pass the result through several layers to obtain a
guild representation with historical health status.

epi,t = LayerNorm(Linear(eMpi,t
) + ePpi,t

), (11)

Eventually, all the vectors are concated to form the final uni-
fied representation of the guild with historical health eHpi

.

eHpi
= (epi,1

||...||epi,k
), (12)

Model Optimization
In this section, we first describe the prediction process of
guild health, and then define the loss function of SAMLA
for model training.
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Figure 4: Historical State Extraction Module (HSEM).

Guild Health Prediction Module. We design a method to
model guild health from multiple dimensions, while using
the perception of guild stability as an auxiliary task. Once
the guild’s unified representation is obtained, it will be split
through 5 different linear layer Wi. The five embeddings
edimpi

after splitting are used to predict different dimensions
of guild health, namely communication, ability, resources,
activity and leadership.

edimpi
= Wi(e

H
pi
), (13)

where dim is different dimension of guild health, such
as communication. Since the health dimensions of guilds
are not completely independent, we use parameter sharing
mechanism among edimpi

to capture the interaction among
different dimensions. We will illustrate its effectiveness in
the experiment. Meanwhile, five segmented embeddings and
the unified guild’s representations will be concated to per-
ceive the stability of the guild.

estabilitypi
= edims

pi
||eHpi

, (14)



where edims
pi

is the concatenation of all dimensions’ embed-
ding edimpi

and estabilitypi
is used to predict guild stability.

Guild Health Loss. Since the guild health contains 5 dimen-
sions, guild health prediction loss also contains 5 loss values.
According to task types, we set loss functions as follows

Ldim =
1

n

n∑
1

(yi,dim − ŷi,dim)2, (15)

where yi,dim is the true value and ŷi,dim is the predicted
value of dim. n is the number of all training samples.

Traditional multi-loss optimization method is to perform
weighted summation of different loss values, but this method
is subjective and not scalable. Therefore, this paper puts the
weight as a parameter into the model for learning.

Lhealth =
∑
dim

(
1

2σ2
dim

Lossdim + log σdim), (16)

where σ is noise. σdim is equivalent to the adaptive weight of
loss Lossdim based on data. Because when σdim increases,
the weight of Lossdim decreases, vice versa. The last item
log σdim acts as a noise regulator, suppressing excessive in-
creases in noise. Note that this adaptive weight learner is
also suitable for other joint optimization tasks.
Stability Perception Loss. The perception of guild stability
is an auxiliary task. Intuitively, unhealthy guilds are usually
unstable. Using guild stability as an auxiliary task can sup-
plement information for the guild health prediction task. To
further capture the dynamics of the guild stability, we not
only consider the original size of the guild but also take into
account the number of people who join and leave the guild.

ystability = F (join, leave, size), (17)

where F is a combination of three variables. Here, F is the
sum function. In this task, we also use the mean square error
as the loss value.
Total Loss. To perceive the stability of the guild when pre-
dicting the guild health, we combine the two loss values, the
total loss function is as follows

Ltotal = Losshealth + γLossstability, (18)

where γ is also an automatically learned parameter to con-
trol the perception of guild stability. The detailed algorithm
for training is illustrated in Appendix Algorithm.

Experiments
In this section, we conduct experiments on a real-world large
scale game dataset to evaluate the performance of SAMLA
on guild health characterization and prediction.

Experimental Settings
Datasets. We use a dataset from a popular MMORPG
game, released by a well-known game company.In total,
we have recorded more than 10 billion game logs which
include twenty thousand guilds and their portraits, per-
sonal information of more than 20 million players, and
4 types of relationship information. Please refer to Ap-
pendix Details of Dataset for the detailed fields contained

in the data set. Code is avaliable at https://github.com/Data-
Designer/AAAI2022-GHP.git.
Baselines Methods. We compare our SAMLA model with
the following state-of-art baselines for guild health charac-
terization and prediction. We have fine-tuned all the follow-
ing benchmarks to achieve the best performance.
• Classical machine learning models: We use

GBRT (Lucchese et al. 2017) and Random For-
est(RF) (Breiman 2001). Since these methods are not
designed for processing sequential data, we concat
sequential vector into one feature as training data.

• CNN (Liu et al. 2017): CNN is also widely used to pro-
cess sequence data. In our experiment, Conv1D is used to
extract guild portraits.

• LSTM (Tay et al. 2017): This is a classical RNNs net-
work, which using gating mechanism to capture the long-
term dependence of the sequence.

• TCN (Bai, Kolter, and Koltun 2018): TCN uses the
structure of 1-D FCN and causal convolution to make it
more capable of retaining historical information.

• Transformer (Vaswani et al. 2017): Transformers uses
the attention mechanism to replace the RNN structure.

• GCN (Gao, Wang, and Ji 2018): It is designed for ex-
tracting information from graphs.

• SAMLA-Single: This is a variant of SAMLA, it only
predicts one task at a time instead of multi-task learning.

Evaluation Metrics. To evaluate the performance of the
guild health prediction, we use the popular measurement
standards, i.e., mean absolute error (MAE) and root mean
square error (RMSE). Smaller values of MAE and RMSE
indicate better performance. For other training parameter in-
formation, please refer to Appendix Parameter Settings.

Comparisons with Baseline Methods
Table 1 shows the performance of our model comparing to
the baselines. For fairness, we have all baselines with the
same embedding size in accordance with SAMLA model.
Obviously, the proposed SAMLA is superior to all base-
line methods in any metrics, proving the effectiveness of
our framework. Specifically, SAMLA improves over the
strongest baseline with 7%, 8%, 18%, 1%, and 3% on Com-
munication, Ability, Resource, Activity, and Leadership.
From the results, the performance is much worse for clas-
sical methods, such as GBRT and RF. One possible reason
is that they are not suitable for handling complicated multi-
media data and ignore the dynamics of guild health, result-
ing in a large amount of information loss. CNN and LSTM
surpasses traditional machine learning, which benefits from
more complicated modeling. TCN and Transformer donnot
show their superiority. This may be due to the short time
window and cannot show their superiority in capturing long
sequences. Traditional time series prediction algorithms are
all still weaker than GCN, which shows that the multiple,
complicated, and heterogeneous relationships among guild
members are an indispensable part of measuring the guild
health. Although GCN has achieved good results, some in-
formation is still missing due to its inability to model the



Model Communication Ability Resource Activity Leadership Stability
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

GBRT 74.442 39.979 121.758 38.430 53.554 23.833 69.140 41.291 26.002 15.903 16.470 6.352
RF 70.980 38.739 115.147 41.531 50.610 24.157 67.807 38.809 25.595 15.989 16.072 5.592

CNN 35.426 5.090 66.340 6.990 55.937 7.010 34.337 4.940 31.385 3.840 18.655 2.350
LSTM 33.226 4.680 55.163 4.650 32.388 5.130 32.588 4.680 7.141 0.890 7.348 0.980
TCN 36.878 5.500 70.626 8.10 59.783 7.260 34.871 5.190 29.749 3.540 15.010 2.030

Transformer 35.270 4.300 62.657 6.050 59.034 9.750 34.424 4.340 40.595 7.040 24.454 4.100
GCN 10.607 0.466 11.883 0.536 7.225 0.322 11.507 0.499 6.620 7.869 16.796 0.779

SALMA-Single 8.171 0.302 9.134 0.368 6.729 0.305 11.000 0.441 0.945 0.040 4.595 0.171
SALMA 7.590∗ 0.248∗ 8.412∗ 0.360∗ 5.502∗ 0.286∗ 10.909∗ 0.438∗ 0.919∗ 0.038∗ 2.230∗ 0.097∗

* means statistically significant by using paired-t test (p < 0.05).

Table 1: Performance comparison for guild health characterization and prediction.

long-term health of guilds. We also guess that no perception
of guild stability has a certain effect on GCN’s results. At
the same time, the results of SAMLA are better than those
predicted by SAMLA-Single, which fully proves the superi-
ority of multi-task learning method.
Effects of Multi-media Data Streams
In this experiment, different ways of integrating multi-media
data streams are replaced to evaluate the effect of its variants.
• SAMLA-NP: We hide the player’s information in GCN,

i.e., ignore the node-level attribute.
• SAMLA-RA: In this variant, the attention mechanism

is only used among different relationships, i.e., the guild
portrait is not used to update the relationship embedding.

• SAMLA-NA: When predicting the values of different
health dimensions, the parameters of different dimen-
sions edimpi

are not shared, that is, the interaction among
different health dimensions is neglected.
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Figure 5: The impact of multi-media data flow influence.

It can be seen from Figure 5 that each media-specific
module represents information about different aspects of the
guild, and none of them are indispensable. In general, the
SAMLA-NP algorithm has the worst performance due to
the loss of players’ information when obtaining the unified
representation of the guild. SAMLA-RA uses different in-
formation integration mechanisms, but their performance is
weaker than SAMLA, which proves that the mutual effects
between the guild portrait and the players cannot be ignored.
SAMLA-NA performs slightly worse than SAMLA, which
is mainly due to the lack of supplementary information be-
tween different health dimensions. Intuitively, the parameter

sharing mechanism not only reduce the number of parame-
ters, but also allow information on different health dimen-
sions to complement each other to improve the prediction
performance of a single task.

Effects of Perceived Guild Stability
In this section, we substitute other indicators for guild sta-
bility to evaluate how the design of guild stability affects the
performance of guild health characterization and prediction.

• SAMLA-NS: This variant directly predicts the five di-
mensions of the guild’s health, without using the guild
stability as an auxiliary task.

• SAMLA-ND: This variant replaces the guild stability
perception with the size of guild, that is, regardless of
the dynamics of the movement of guild members.

• SAMLA-NT: This variant directly treats the guild stabil-
ity prediction as a subtask for training.
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Figure 6: The impact of perceived guild stability.

According to Figure 6, we can get the following observa-
tions. First, by comparing SAMLA-NS and SAMLA-ND, it
is easy to conclude that the perception of guild stability has
a significant impact on the characterization and prediction of
guild health. Second, since using the guild size instead of the
guild stability ignores that the guild is a dynamically chang-
ing structure, the result of SAMLA-ND is slightly worse
than our proposed model. Third, SAMLA-NT is the worst
variant in most of the dimensional predictions, and we guess
the possible reason is that guild stability is not only com-
posed of the five dimensions of guild health. Directly using



the guild stability as a subtask will bring the noise to the
original main task, namely guild health prediction. In con-
trast, SAMLA can reduce the impact of this noise with the
help of unified representation.

Impact of Hyper-parameters
To verify the impact of different hyper-parameters on
SAMLA, we conduct a set of experiments with varied hyper-
parameters on our dataset.
Encoder Size. The encoder size determines the high-level
characterization extraction capability. We test the following
variants of SAMLA model with the encoder size of 1, 2, 3, 4:
SAMLA-E1, SAMLA-E2, SAMLA-E3 and SAMLA-E4.
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Figure 7: The impact of Encoder size.

As shown in Figure 7, the SAMLA achieves the high-
est performance when the encoder size is set to 2.
Fewer encoders will lead to insufficient model character-
ization capabilities, and more encoders will lead to over-
parameterization of the model (Vaswani et al. 2017).
The GCN Layer Depth. The quality of player representa-
tion is closely related to the guild representation, and the
number of GCN layers controls the depth of the model
and the degree of player aggregation. We test our model
with different numbers of layers of 1, 2, 3, 4: SAMLA-G1,
SAMLA-G2, SAMLA-G3 and SAMLA-G4.

As shown in Figure 8, stacking two GCN layers can
obtain the best results. Fewer layers cannot capture high-
hop neighbor information, and more layers will cause over-
smoothing problems (Wu et al. 2020b).

SAMLA-G1 SAMLA-G2 SAMLA-G3 SAMLA-G4
0

2

4

6

8

10

12

14 Commu
Ability
Resource
Leadership

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

RMSE
Activity

SAMLA-G1 SAMLA-G2 SAMLA-G3 SAMLA-G4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Commu
Ability
Resource
Leadership

0.4

0.6

0.8

1.0

1.2

1.4
MAE

Activity

Figure 8: The impact of GCN Layer Depth.

Case Study
In the deployment, we use two forms of graphs to help op-
erators propose targeted measures against the guilds based

on the predicted results. We randomly select several typical
cases from the service for detailed analysis, and the corre-
sponding prediction results are shown in Figure 9. For exam-
ple, although the ability dimension of Guild 98 is expected
to be better, it is expected to be lower than average in terms
of resources and activities. Operators can take some incen-
tive measures in advance, such as increasing the value of
guild activities rewards or sending SMS recalls. Another ex-
ample is guild 23. Its lack of ability dimension is the main
reason for its unhealthy. The operator can suggest that the
guild absorb more senior talents, or organize multiple bat-
tles to improve the overall ability. These targeted measures
are of great significance for maintaining the prosperity of the
guild and increasing the mobility and retention of players.
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GUILD HEALTH PREDICTION
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(a) Comparison of the average
health of all guilds in the server.

Member: 43
Online: 32 ↑
Funds: 16742 ↑
Leave: 11 ↓

Level: 4
Message: 541 ↑
Join: 8 ↑
…….

Guild ID: 23 Leader ID: 1703

Member: 97
Online: 22 ↓
Funds: 13771 ↓
Leave: 27 ↑

Level: 5
Message: 323 ↓
Join: 16 ↑
…….

Guild ID: 98 Leader ID: 5224

Member: 123
Online: 68 ↑
Funds: 17804 ↓
Leave: 4 ↑

Level: 6
Message: 1473 ↑
Join: 3 ↓
…….

Guild ID: 164 Leader ID: 439

(b) Several typical cases.

Figure 9: Real-world application.

Conclusion
In this work, we explore a new task of characterizing and
predicting the guild health in multiplayer online role-playing
games. This study fills the gap of exploring data-driven
learning method for organizational health in a quantitative,
dynamic, and multi-dimensional manner. Specifically, we
first design different media-specific networks to extract in-
formation from various aspects of the guild in a dynamic
manner. Then, inspired by many well-received theories on
organization management, we delicately define five spe-
cific and quantitative dimensions of guild health and apply
the multi-task learning approach for parallel prediction. Fi-
nally, we innovatively use guild stability as an auxiliary task,
which is proved to be an informative supplement to the guild
health prediction task. We also conduct a case study to prove
the great value of SAMLA in business. In general, the guild
health prediction brings convenience to the management of
the guilds, improves the game experience of players, and
maintains a good game ecology. For future work, we plan
to extend our model in other areas, such as online commu-
nities and real-world organizational research.
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